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ABSTRACT

In this paper we establish concentration phenomena for subspaces with
arbitrary dimension. Namely, we display conditions under which the Haar
measure on the sphere concentrates on a neighborhood of the intersection
of the sphere with a subspace of R™ of a given dimension. We display
applications to a problem of projections of points on the sphere, and to
the duality of entropy numbers conjecture.

1. Introduction

The classical concentration phenomenon refers to concentration of the Haar mea-
sure on the sphere S"~! around the intersection with (n — 1)-dimensional sub-
spaces. Namely, for any fixed ¢, the area in S” lof the e-neighborhood of an
(n—1)-dimensional subspace converges to 1 when n — oo. This phenomenon and
its extensions have attracted much attention, and have a variety of applications
in the Asymptotic Theory of Normed Spaces; see, e.g., [7], [4]. The complemen-
tary case is that of the area in ™! of the e-neighborhood of a 1-dimensional
subspace. It converges, of course, to 0 when n — co. In both the case of dimen-
sion 1 and the case of co-dimension 1, the convergence is exponentially fast, a
fact which plays a central role in the applications.
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The results displayed here relate to the limit as n — oo of the area in S™~!
of the e-neighborhood of a k-dimensional subspace Ey, for the full range of k
between 3 and n — 3. A particular case is when k is proportional to n, namely
k = An. In this case it is not difficult to show (we do this in section 2) that for
every 0 < A < 1, there exists a critical value £()\), determined by the formula
sine(\) = v/1— X, such that: If ¢ > €(A) then p((Eg)e)—1 as n — oo, and
if ¢ < e(A) then p((Ex):)—0 as n — oo (as customary, (Ey). denotes the set
{x € 8" 1: p(z, ExyNS™ 1) < &} where p is the geodesic distance on the sphere,
and p denotes the normalized rotation invariant Haar measure on the sphere).
Our main concern is finding the exact rates of convergence. Approximations for
these rates turn out to be useful in several applications. We show that in both
the case ¢ > () and the case € < &(A), the rate of convergence is exponential
in n, namely 1 — e~ and e~ 7" respectively, where v = (), 4) is a constant
depending only on A and on § = £ — £(A). We provide precise estimates for the
constant y(A, §).

The established estimates are then applied to several problems in the Asymp-
totic Theory of Normed Spaces. The first application deals with projections of
points on the sphere into lower dimensional subspaces as follows. A random point
on ™! projected on a An-dimensional subspace, has, with high probability, eu-
clidean norm close to vA. We estimate precisely this probability. This enables
us, for instance, to provide an isomorphic Johnson-Lindenstrauss lemma. The
second application is concerned with the duality of entropy numbers conjecture.
In the special case where one of the bodies is the euclidean ball B(IF), and where
the covering number of K (a general convex body) by B(l}) is exponentially
large, we show duality, namely that the covering number of B(l%) by the polar
body K° is also exponentially large. We also use the estimates to compare, fol-
lowing Diaconis and Freedman, the distribution of the first ¥ coordinates of a
random vector on the (n — 1)-dimensional sphere with a random gaussian vector
with k coordinates.

The paper is organized as follows. In section 2 we display a useful represen-
tation and derive the critical value of the concentration. Section 3 contains the
main estimate when A and ¢ are fixed and n — oo. This estimate is generalized
in section 4 to the case in which X and ¢ are not necessarily fixed and may change
with n. Section 5 includes several special cases, among them a case which is use-
ful in the applications. In section 6 we give the application regarding projections
of points on the sphere. The latter result is further applied in section 7 to the
duality of entropy numbers question. In chapter 8 we give the estimates related
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to the mentioned result by Diaconis and Freedman.
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2. A useful representation of the spherical area

In this section we represent the area of the e-neighborhood of a k-dimensional
subspace by means of Beta-distributed random variables. Through this repre-
sentation, some of the properties of the behavior of the area become transparent.
The area, on the sphere, of the e-neighborhood of a k-dimensional subspace is

1

€
_ s on—k—1 k—1
1((Bk)e) = foﬂ-/2 1 3 oo /0 sin xcos" " xde.
By the change of variables u = sin? x one gets
1 sin® ¢ - .
(2.1) u((E)e) = fl EE— V14 / uz Y1 —wu)? ldu.
T —u)z 7 du Jo

Recall that the integral fol u™ (1 — w)"~1du coincides with the Beta function

CTmL(l) _ (m— 1)1 - 1)!
Beta(m, [) = Lim+1) (m+l-1)! °

This can be easily verified by induction. The expression (2.1) implies, therefore,

that as a function of &, the measure p((E}y).) is the distribution of a Beta random

variable with parameters (ﬂ—g—k, %) The expectation of such a variable is "—;’9

Letting £ = An, we can write

_ F(n/Z) sin® e (3;2*_)2_1 ’\T"—
@D W(E) = e s v =0

For a random variable Y, with distribution Beta((1 — A)%, A%), we have

1((Ek)e) = Prob[Y, < sin%¢],

(23 E[¥] = (1- ),

and ML= )
Yn = A n-+o00 Y-
Var[Y,] 271 —n—o0 0
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Remark 2.1: From the derived representation it is possible to get, easily, the
existence of, and the formula for, the critical value e(A). The expectation of the
distance of a random point = from the subspace Ej is determined by the expec-
tation of Y;, which is independent of n, and it is therefore () = arcsin(yv/1 — X).
Approximately half of the measure on the sphere is within a distance smaller than
g(A) from the subspace. The argument is that the median and the expectation
are close. This already verifies the existence of the critical value of . Moreover,
the Beta random variables Y,, concentrate, when n — 0o, around their mutual
expectation. This holds, for example, since the variance of Y,, tends to 0 as
n — 0o. By (2.3) we see that, therefore, the measure on the sphere concentrates
within distance £(A) of the subspace.

Remark 2.2: Note that the e-neighborhoods we took were with respect to the
geodesic distance on the sphere. If, instead, we would compute the measure with
respect to the euclidean distance in R™, the term “sine” in formula (2.2) would
become simply “c”.

Finding the critical value was straightforward. A deeper investigation of the
asymptotic deviation of a Beta variable from its mean (using methods to handle
Beta random variables with large parameters with a constant ratio) is needed in
order to get the convergences rates. This is described in the next section.

3. The main estimate

In this section we display and prove the main result of the paper. Throughout
what follows we use the following notation. For variables 4 and B depending on
n, we write A ~ B in the following two meanings.

(1) If both A and B are close to 0, A ~ B means that 4 — 1 as n — oo.

(2) If both A and B are close to 1, A ~ B means that =4 — 1 as n — cc.
When A and B depend on several parameters, we specify which parameters are
fixed, and we mean that the convergence is uniform with respect to all other
parameters.

THEOREM 3.1: Let Ej be a k-dimensional subspace of R", and denote by
1((Ex)e) the Haar measure on the sphere S™~! of the set of points within a
geodesic distance smaller than ¢ of Ey,. We write k = An. Fix 0 < ¢ < 7/2 and
0 < A < 1. The following estimates hold as n — oo.

(i) Ifsin?e > 1— )\, then

1 AON s
(3.1) w(Br)e) ~ 1 e N (Ae)
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(ii) Ifsin®e <1— ), then

1 AML=A)  aune
Vnm (1= )) ~sin’e

where u(\,e) = (1 —A)In %;2/\_5) +Aln co;\?s'

(3.2) #((Ek)e) =

For the proof of Theorem 3.1 we need the following preliminary observations.
We employ ideas given in Alfers and Dinjes [1] for comparing a
Beta(am, (1 — a)m) distributed random variable with a standard Gaussian ran-
dom variable, where m is large and 0 < @ < 1 is constant. Following (1], define
the two functions:

st = s V(3 - (1) ) "

(thus u(), e) = A%((1 = X),sin?¢)/2), and

a(l —a)
a-—p

D{a,a) = A(a,p) where a = A(a, p).

The mapping A(ca,p) is well defined (the term in the parentheses is always
positive), and for every fixed o it maps (0,1) bijectively onto (—o0,o0). No-
tice, however, that if A(e,p) = 0 then o = p, and then D(a,0) is not defined.
We define it in the natural way as the limit of D(«,a) when a — 0 and get that
D(c,0) = 1 for every a. A straightforward calculation (using the change of vari-
ables a = A(a,t), the observation that %A(a,p) = — i ayAtapy the Stirling
formula and the behavior of D(«, a)) yields the following results.

LEMMA 3.2 (See [1, Theorem 1.1)): IfY is beta-distributed for the parameters
(am, (1 — a)m) then

m A(Cl,p) m m 2
(3.3) Prob[Y > p] = ¢°" () / \/ =" %4 D(a,a)da
o 27
where S™ () is very small for large m, namely S™(a) ~ (73=)(1- 1 — )00

— 0.

COROLLARY 3.3 (See [1, Corollary 1]): Let Z be a standard Gaussian random
variable, and let Yy, be Beta-distributed with parameters (am, (1 — a)m). For
m — oo and for fixed p

(i) If p> o then

. Prob[Y,, > p]
(3.4) n}gnoo Prob[Z < y/mA(a, p))

= D(a, A(a, p)).
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(i) If p < o then

55) 1y Probl¥i < p]

m—oo Prob[Z > \/mA(a, p)] = D(a, A(a, p)).

(Note that the case p < a is not covered in (1, Corollary 1].)

Following [1], another result can be obtained as follows (we use it in section
4).
ProOPOSITION 3.4 (See [1, Theorems 2.1’ and 2.1”]): Assume Y is a Beta-

distributed random variable for the parameters (am,(1 — a)m), and denote
o/ =a;™; and o = 22=1. Then

Prob(Y < p] >Prob[Z > vm — 1A(d/, p))],

ProblY < p] <Prob[Z > vm — 1A(a", p)].

Proof of Theorem 3.1: 'We use Corollary 3.3 with m = n/2, a = (1 — )), and
p = sin®e. Again, let Z be a standard Gaussian random variable. First examine
the case p > 1 — A\. Denote by ® the Gaussian distribution function ®(z )
A= I e #dt. Then Prob[Z < \/FA((L - X),p)] = (/FA((1 - ),
Notice that in this case A({1 — A), p) is negative. Differentiation easily yields the

(3.6)

following approximation for the Gaussian integral for y positive:

(3.7) _1____1___6—*33§L/°°e betgp o L 1o-n
ory Ty vz ), Vary
This approximation implies that
n e~ 3 (A%((1-X,p)/2))
Prob[Z < \/;A((l —A),p \/ﬁ NCY T )

(here, and throughout this section, both A and & (= arcsin,/p) are fixed). A
direct substitution yields

D1 = A A1 = 2. = Y25 A1 - A

Therefore, using Corollary 3.3, we get the estimate
n
ProblY > p] ~ ® (\@A((l - A),p)) D((1= A, A((1 = A),p))

1 A(1 =N 3N,
S Varp—(1-N°
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In other words, if sin?e > (1 — ) then
Prob[Y < sin’¢] = 1 ~ Prob[Y > sin®¢]

~1- 1 A1 = X) o= 3(A2((1-),5in% €)/2)
Vvnmsin?e — (1= )

This completes the proof in the case sin®c > (1 — A). The case sin®e < (1 — \)

follows, in fact, from the former case. Assume sine < (I1-AX), and let Y’ be a

Beta-distributed random variable with parameters (An/2, (1 — A)n/2). Then Y’
has the same distribution as 1 — Y and therefore (since now cos?e > ) we get

Prob[Y" < sin?e] = Prob[Y’ > cos®€]

oL VA=A aarcoste)2).
vnm (cos?e — )

Since A(t,s) = A(1—t,1— s), the proof is complete.

4. The case of )\ and ¢ not necessarily fixed

The estimates in the previous section apply to the case n — oo with A and ¢ fixed.
In many problems, however, we would like to allow A to change with n. To cover
such instances we use Proposition 3.4. This proposition gives estimates from
above and from below, rather than limit estimates, for the required probabilities.
The expressions we get resemble the estimates attained for A and e fixed.

We first give Theorem 4.1, which is in the most general form. In Theorem 4.2
we place an extra condition which simplifies the estimates. This condition can be
relaxed, to form a condition which holds in all cases relevant to us in this paper.
The result is given in Theorem 4.3.

THEOREM 4.1: Letn >0,3<k<n-3, A= f‘w and let E}, be a k-dimensional
subspace of R™. For e > 0, let u((E}).) be the Haar measure on the sphere S™~!
of all the points within a geodesic distance smaller than e of Ey,. Denotel = %
andl' = % Then there exist positive constants cy », and c ,,, bounded by an
absolute constant M, such that:

(i) Ifsin®e <1~ A then

1 e—u—cg\vn—lnl’

V2r 1 ’
(4.1) T \/W+,/u+cxyn+lnl’

< u((Ek)e)

1 e—-u—cx'n—lnl

<

- \/2_7r\/u+cx,n+lnl'
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(ii) Ifsine > 1 — X then

(4.2)
1 e—u—c’)\‘"—ln !
1-— < E
\/2—71_ 1 , ™ = l"(( k)t—:)
Vutey ,+inl Tyuta,th

e~ U, n—Inl
<1-

- \/ Vutexnn, +1Inl

where u = Z[(1 - A)In 82 4 a1 2.

sin“ g cos* g

If we restrict our discussion to the case where the terms [ and !’ in Theorem
4.1 are bounded from below and from above, we can give a simpler formulation
of the result.

THEOREM 4.2: Letn > 0,3 <k <n-3, A =k/n, and let Ey, be a k-dimensional
subspace of R"*. Fix 1, > 0 and l3 < oo, and assume that [, < S{"_zf < g,
h < 9%25 < la. Then there exist absolute constants c,c/,cy,...,c4, depending
only on |y and l3, such that:

(i) Ifsin®e < 1— A, then

(43) Cy

(i) Ifsinc > 1~ A, then

et —u
44 1- < u((E <1-
( ) 03\/—— = :u(( k) ) c4m
where u = 2[(1 - X) ln%;}elﬁ»)\lnm]

The restrictions of boundedness imposed on ! and I in the statement of Theo-
rem 4.2 can be relaxed. In the next theorem we assume, instead, only that [ and
l" are between 1/n and n.

THEOREM 4.3: Letn > 0,3 <k <n-3, A= k/n, and let Ey, be a k-dimensional
subspace of R". Assume that

1 sin%e 1 cos

2™ 757
Then there exist absolute constants c,c’,cy, ..., cs, and a sequence «,, — 1, such
that:
(i) Ifsin’e < 1— A, then

2¢

(43) (5]
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(ii) Ifsin®e > 1 — A, then

—apu e—anu
4.4 1= s ———= < p((Er)e) S 1 -4
( ) c3 U+C’~H(( k)) 4 u+c
where u = 2[(1 - ) In & 4+ 3l ).

Proof of Theorems: Proposition 3.4 together with the approximation (3.7) give,
for sin?e < 1 — A, that

L (B <
i = < k)e) < ———7=,
\/211'\/5—,+\/§ 2m VE
and for sin?e > 1 — )\, that
1 e ¢ 1 et
1- — 5 < u((By). <1 - —= ,
Var Ve MBS U

where

e=2(a-(1- ) (T w)y
2 1-Xn

+am (At a2y

sine

cos?e
2 2 2
¢ _2((1 /\)ln( sinZe )+/\(1 /\n)ln( cos?e ))
Rearrangement of terms yields
2\ 2 fopie sine
§—u+ln(l+————n_2) +ln(1—~——(1_)\)n) +ln————(1_)‘_%),
2\ 2\ cos’e
’— —— — —
§_u+ln(1+n_2) +1n(1 M) 1n)\_%

when wu is spelled out in the statement of the Theorems. Restriction to the case
(1-A)n > 3 and An > 3 implies the existence of positive constants c, , and CC\,m
bounded by a constant M such that

E=utcrpy+Inl, &=u+tc),+mhl.

This proves Theorem 4.1. In the case of Theorem 4.2, for large enough n, ¢
and £ are bigger than 1 (actually they are tending to infinity) and hence the
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additional 1//€ or 1/4/€ in the denominator of the displayed inequalities can
be ignored, resulting perhaps in a slightly larger constant. Since [ and I’ are
assumed bounded from below and from above, we can substitute Inl and Inl’ by
constants as well, and the proof of Theorem 4.2 is also complete.

To prove Theorem 4.3, we use Theorem 4.1 and the boundedness assumption
in a similar way.

5. Some special cases

In this section we provide useful expressions for the general estimates in several
particular cases which may become handy in applications. The computations
and substitutions are straightforward, and are included for completeness.

Case 5.1:  sin?e = (1-X\)£Aé, where A — 0, A > ¢/ /n for an absolute constant
c’,and 0 < d < 1 is fixed.
(a) If sin®e = (1 — ) + A6, then
(5.1)
1 n
p((Ep)e) ~1—c e~ 3 (MIn(L5)~8)+0(0?))

VEAIn(5) - 6)+ 0())

(b) If sin®e = (1 — A) — AJ, then

/

(5.2)  u((Ex)e) = ¢ e~ 3 OMIn(F5)+6)+0(N)

\/—’27(/\(ln(ﬁ) +8) 4+ 0(\2))

where, in general, ¢ and ¢’ depend on §. The constants ¢ and ¢’ become absolute
if we further assume ¢ to be bounded away from 1 (say if we assume § < 9/10).
In order to verify (5.1) and (5.2) we establish the boundedness condition re-
sin’ e q cos’e

quired from the expressions %5 an 3
Such a bound exists for a fixed 4, and it is uniform with respect to ¢ bounded

in the statement of Theorem 4.2.

away from 1. Now, Theorem 4.2 implies the following. When sin® & = (1—X)+ A4,

1((Ep)e) =1~ ¢ o= B(A%((1-X)sin® £)/2)
\/-g(Az’(u — A),sine)/2)
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We can make use of the equality

%A2((1~)\),(1—)\)+/\6):(l—A)ln(ITl/{%g) —|—)\ln(1 1 )

B
:_(1—A)1n<1+1—’\_5—A) — Aln(1 - 6)

=M+ %v(s?/u — A+ = Aln(1=9)

= A(in(125) - 4) + 00,

and get the estimate, thus verify, (5.1).
When sin®e = (1 — A) — Ad (namely cos? e = A(1 + §)), we look at
/

E}):) = Prob[Y’ > cos®e] ~ < e~ B(A%(\cos%€)/2).
p((Ek)s) = Prob| é] NEpEewT=SYo)

Now we make use of the equality

+{(1—-A)In (ﬁ)

)
:)\ln(1+5>—(l—~)\)ln(l—%5)
) A /(1N

1

) +o0?)
and deduce estimate (5.2).

Remark: If in the previous example we assume that § is small, the terms in (5.1)
and (5.2) are of order e~ In the classical concentration result a term e~
appears. We note that although there is a square in both expressions, 2 and
42, they originate differently. In classical concentration the square appears when
one computes the modulus of convexity of the euclidean ball. In our setting the
square is a result of the behavior of the term u in Theorem 4.1 for small 6. This
is the reason that in Case 5.4 below, when we use the formula in Theorem 4.1 for
large &, we get completely different results. Indeed, the expression (ln(l%é) —9),
which for small 8 behaves like 62, explodes when 4 — 1.

Case 5.2: sin®e = (1 —A) £ (1 ~ A)d, wherc A — 1 and 0 < § < 1 is fixed.
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(a) If sin®e = (1 — A) + (1 — A\)J, then
(5.3)
#{((Er)e) = 1-

¢ e~ 3((=X)(In(gk5)+8)+0((1-3)))
V21 = N(in(rk5) +6) + O((1 - 1)2))

(b) Ifsin®e = (1 —A) = (1= \)4, then
(5.4)
H((E)e) ~

¢ o~ 3((1-2)In(r15)-8)+0((1-1))

V3=V (n() - ) +0(1 - 1))

where, again, in general ¢ and ¢’ depend on §, but become absolute if § is assumed

to be bounded away from 1.
Verifying (5.3) and (5.4) follows the same lines as in example 5.1.

CASE 5.3: sin’e = (1 —A) £ 4, where 0 < A < 1 is fixed and § — 0.
(a) If sin®e = (1 — A) + 6, then

(5.5) p((Er)e) ~1— ¢ e—%(—ﬂff_x)-{»O(éa)),
V3 iy +006%)
(b) If sin®e = (1 — A) — 4, then

J

(5.6)  u((Br)e) = ° ¢~ i +0(5%)
\/n(2>\(1 5 +0(6%))

where, in general, the constants ¢ and ¢’ depend on A. If X is assumed to be

bounded away both from 0 and from 1, the constants become absolute.

In order to verify (5.5) and (5.6) we establish again the boundedness conditions

for the expressions s{'ff and C°§2 £ in the statement of Theorem 4.2. Such a bound

exists for a fixed A, and it is uniform with respect to A bounded away from 0 and
from 1. Now, Theorem 4.2 implies the following.
When sine = (1 - \) + 4,
u((Ep)e) =1 - ¢ e~ 3(A%((1-X);sin” €)/2)
VBA2(1 - 1), sine) /2)

We can make use of the equality

%A2((1—A),(1—/\)+5) = (1—-/\)111(11_;/\15) +’\ln(,\i5)
1 62
=330 +0(8%)
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and get the desired estimate (5.5). The second case, (5.6), is verified in the same
way.

CaSE 5.4: sin?e = (1 — A) — (1 — A)d, where X is close to 1. (Note that the
assumption here is the same as in Case 5.2, except that here no conditions are
imposed on 6. We make use of this specific condition in the proof of Proposition
6.2 below.) In this case we get an inequality as follows:

o= (1= (In(r15)=6)n/2+In( )

g <ec :
V=N in(L5) - 6)n/2 + In(zh5) + ¢

(5.7) #((Ex)

In order to verify (5.7) we use Theorem 4.1. (We cannot use, as we did in the
previous cases, Theorem 4.2, since the boundedness conditions in Theorem 4.2
do not hold uniformly for § close to 1.} The terms w, ! and I’ in Theorem 4.1 are
in this case

_nio L_ 1_222_1_333_
u-2((1 )\)(ln(l_é) 5)+2(1 NN = S(1= %% /X 4 ),
sin’ e
l= =1-4,
1-2A
2
, Ccos“e 1-A
= =1 é.
'== T
Therefore

w+1Inl > g(l—A)(ln(lié) ~8) +In(1-6).

Inserting this inequality in Theorem 4.1 implies (5.7).
Similar inequalities can be deduced for the case sin® e = (1—X) + (1 — )4, and
likewise for the other inequality in Theorem 4.1. We omit the details.

6. An application to a projection problem

Consider the orthogonal projection of a random (uniformly distributed) point x
in the (n—1)-dimensional sphere onto a k-dimensional subspace. The expectation
of | Pz|, the euclidean norm of the projection P, is close to \/k/n. The reason is
that the expectation of the square of the euclidean norm is exactly k/n. Moreover,
the set of points  for which [Pz| is close to \/k/n has a large measure. This
gives rise to the following general question, several aspects of which we address
in this section.

QUESTION 6.1: Given a set of cardinality N on S™~1, does there exist a subspace
of dimension k such that the euclidean norms of the elements in the projection
of the set on the subspace are not far from \/k/n?
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An answer to this question can be one of two types. First, for a given N
(which depends on the dimension n), one may provide an estimate A(N) such
that whenever a set of cardinality N on the sphere is given, a k-dimensional
subspace exists such that all the projections on the subspace of the points in the
set have euclidean norms which are A(N) close to \/m Second, for a given
degree of closeness A, one may estimate the maximal cardinality N{A} such that
whenever a set of cardinality N(A) is given, a k-dimensional subspace exists such
that all the projections on the subspace of the points in the set have euclidean
norms which are A-close to \/k/_n In both cases we are interested in the behavior
of the estimates for large dimension n. We refer to an answer of the first type
as an isomorphic answer and to the second type, for a fixed A independent of
dimension, as a A-isometric answer. In the first part of this section we give a
general, however not transparent, answer to Question 6.1, addressing both types
of estimates. In the second part of the section we provide a more concrete form
of the answer in a particular case (which we then use in the next section).

Our way to establish the existence of a subspace with a certain property is
to show that the measure of subspaces in Gy, with this property is positive.
(Gpk is, as customary, the Grassman manifold of k-dimensional subspaces of
R"™, endowed with the normalized Haar measure.)

To provide our answer to Question 6.1, we need the following observations.
First, the measure of subspaces in Gy, x with a certain property is the same as
the measure of orthogonal transformations U € O(n) such that U(Ep) has this
property, where Eg is some fixed subspace of dimension k. (Here O(n) is the
group of orthogonal transformations on R™ endowed with the normalized Haar
measure.) Second, consider a set of points {2;}}¥, in R". Placing a restriction
on the norms of their projections on U(Ey) is equivalent to placing the same
restriction on the norms of the projections to Eq of the set {U~1x;}Y . This is
implied by the equalities Pyg,z = Pyg,UU 'z = UPg,U~'z. Third, consider
again a set of points {2;}/¥, in R*. If 1 — Zivzl,u{U € O(n) : Pg,U™z; ¢
I} > 0, for a given set I C [0,1], then the measure of the family of orthogonal
transformations satisfying |Pg,U1x;| € I for every 1 < i < N, is positive.

For k = (1 — A)n and for A > 0 define

(6.1) po = p{x € S"7' :||Pg.z| — Vk/n| < A}.

Taking into account these three observations, we see that if N < 1/ug, then for
every set {x; }]*., in S"~! there exists a subspace E} of dimension k such that for
every z;, it = 1,...,n, |Pg.x; — \/k/_nl < A. The above enables us to establish
relations N(A) and A(N) as an answer to Question 6.1. Indeed, given A, we
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can use sections 3, 4 and 5 to estimate py = po(A), using the following evident
equality:

po=p{r:V1-A-A<|Pgz|<Vi-A+A)}
=p{r:d(z, Exn)? < (VI =X+ A)2} = p{z : d(z, Exn)? < (VI = X = A)?),

and then have the estimate N(A) = 1/uo(A). To get an estimate for A(N), we

do the reverse. In Proposition 6.4 we use the above scheme for a special choice
of N.

Remark 6.2: The preceding derivations, and in particular the estimate for N{A},
are close in spirit to the Johnson-Lindenstrauss Lemma; see [5]. The Lemma
gives an estimate for the smallest dimension k(n) such that any subset of cardi-
nality n of I can be (1+¢)-isometrically embedded into lg ™) Such an embedding
can be realized by projecting into a well chosen subspace of the appropriate di-
mension, and by dividing then the images by V. The reason the method works
is the following. Instead of the set of points, say A, in [}, one considers the set
- (p)
lzi — ;]
of normalized differences. To this end a restriction has to be imposed on the
cardinality of N, or equivalently on the dimension k (the exact restriction can
easily be computed). Then the existence of a subspace Ej such that for every
y € N the euclidean norm of its projection onto Ej is close to v/X is guaran-
teed. This insures that the distance between Pz; and Pz, is close to v/ times
the distance between z; and ;. In other words, the relative distances do not
change much. Thus, the resemblance to the derivations in the present paper is
apparent. However, while in the Johnson-Lindenstrauss Lemma the embedding
was required to be an e-isometry, the present paper offers a general isomorphic
version.

Remark 6.3: The following estimate was used in an article by Milman and Pajor

[9],

1 \(-M)n/2

(62)  ProblT € O(n): |Pg,Tal > glzf) < (e(1-€)7—) .

In the terminology of the present paper the left hand side of (6.2) has the following
form,

Proble € §"~' : distf ), (z, Ex) < 1 - £?).

Estimates for this expression better than (6.2) can be obtained from the results
in sections 3-5. Such estimates would be asymptotically accurate. Moreover,
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(6.2) has meaning only when £2 > A\(1 + %(1 ~ 1)), while using the technique
of the present paper yields an answer whenever £2 > .

We turn now to the special case for which we get a more concrete answer to
Question 6.1. Suppose that e°* points in $”~1 are projected into a k-dimensional
subspace Ey. If c is large, it could be that for no subspace Ej all the norms of the
projections are close to \/k/_n We can, however, choose Ej such that all of the
projections do not enter some small neighborhood of 0, namely we can establish
some kind of isomorphic result. The precise result is as follows.

PROPOSITION 6.4: For any number c, there exists an ¢(c¢) (for instance, {(c) =
e~(2¢+1) will work) such that the following holds for every A = k/n fixed. For n
large enough, whenever a set N in S™~! is of cardinality |N'| = e, there exists
a subspace E of dimension k such that

(6.3) Ve(e) < |Pea| < VA1 +e(c))

for every x € N'. Moreover, by taking a small enough ¢(c) one can ensure that
the measure of the set of subspaces in G, ;. satisfying (6.3) is arbitrarily close to 1
(for instance, for £(c) = 1e=(2¢+1), the latter measure is larger than 1—ez(1-27).

Proof: 'We will show how to establish the left hand side inequality with e(c) =
e~(c+1) This is the only part we use in the application. The right hand side
is attained in a similar way, and for the two inequalities to hold together we
reduce ¢(c) to the magnitude mentioned in the statement of the theorem. To
prove the left hand side, first note that the projections of N points do not enter
an e-neighborhood of 0 if and only if they all stay within a distance more than ¢
from F ,ﬂ- Using the same reasoning as in the general answer above, we find that
for the latter condition to hold it is enough that N be smaller than 1/p((Ep_x)e)-
For 1 — A = k/n small, and when sin?¢ = (1 — A)(1 - §), we use Case 5.4 to get
that the ineguality

V5 n(s) - 9) - ()

o4 n(r15)=8)-In(rL5)
cl

(6.4) N <

ensures that N < 1/p((En—x)e). Since the function (In(yi;) — ) can be ar-
bitrarily large for & close to 1, we see that for any number N of points on the
sphere, there exists a 0 < § < 1, and a subspace Ej of dimension & such that the
projections, on Ej, of all the points are out of a /(1 — A)(1 — §)-neighborhood

of 0. For the specific case N = e°* mentioned in the statement of Proposition
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6.4, we identify 6 = 6(c) for which (6.4) holds. To this end, for k large enough,
it is enough to ask that

< 3(n(25)-0) -m (L)

or equivalently that 1 —§& ~ e~2¢. This identifies the desired 4. In particular, the
size of the neighborhood of 0 is

e0) = V(I - N1 -0 ~ V(1 - Ne™

This verifies the first claim of Proposition 6.4. By choosing a smaller £(c) and

following the same line of proof, one can verify that the inequality (6.3) is satisfied
for a large measure of subspaces, and complete the proof.

We may apply Proposition 6.4 to the set of normalized differences

N'={|i:z| :x,yEN},

and get the following.

COROLLARY 6.5: For any number c, there exists £'(c) (for instance, £'(c) =
e~2¢+1)) such that the following holds for every A = k/n fixed. For n large
enough, whenever a set N in R" is of cardinality |N'| = e°*, there exists a
subspace E of dimension k such that

(6.5) Ve (e)|z - y| < |Pez — Pey| < VAQ +€'(¢))|z — v
for every z,y € N.

Remark 6.6: Consider the projection of the sphere S™~1 into RF, with k =
An. The proportional concentration phenomenon displayed in section 2 implies
that for every ¢ > 0 fixed, the measure of the set of points in S™~1 which are
projected into the e-neighborhood of the sphere of radius v/ in R* tends to 1
as n — 0o. Using Theorem 3.1 we get the following result, replacing the fixed ¢
by a neighborhood of width 1/,/n. There exist constants ¢; > 0 and ¢ < 1 such
that

7

Notice that (6.7) estimates the measure of the projection of the given strip with
constants ¢; > 0 and co < 1 independent of n.

(6.7) 0 < u{x :|PEe.x| € (\/X— in’ Va4 —1——\;7/\)} < ca.
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7. An application to the duality of entropy numbers conjecture

In this section we use Corollary 6.5 to answer a question regarding entropy
numbers. Recall the covering number, N(K,T), of K by T, where K and T
are two convex bodies in R", given by

N
N(K,T)=min{N : H{z;}X, ¢ K, K c | J{z:} + )}

i=1

The duality conjecture, due to B. Carl and A. Piestch, suggests the existence
of absolute constants a and S such that for every pair of centrally symmetric
convex bodies T and K the inequality

(7.1) N(K,T) < (N(T°,aK°))?

holds, where T° and K° denote the polar bodies of T and K, respectively.
In Theorem 7.2 below we verify the duality conjecture in the special case where
T = B(13) and log N(K, B({%)) = yn. We need the following result from [6].

THEOREM 7.1 (Konig and Milman): There exists a universal constant C such
that for any n and any two convex bodies K,T C R",

1 ( N(K,T)

7.2) ¢S N(T°,K°))n <€

THEOREM 7.2: Assume that N(K, B(1%)) = 291,
(a) Ife; > 2log, C, then

(7.3) N(B(I}),K°) > 20™/2,
(b) If 1 < 21og, C, then

1
44/log, C

where C is the absolute constant guaranteed in Theorem 7.1.

(7.9 N(B(), ( e Ee) > 20,

Proof of Theorem 7.2: Case (a) follows immediately from (7.2). Indeed. since we
assume that N (K, B(I})) = 291", it follows from Theorem 7.1 that N(B(l3), k'°)
> (291 /C)". This together with ¢; > 2log, C' implies (7.3). It is not possible to
use the same argument in case (b) since in this case ¢; is too small. Our strategy
to handle case (b) is to use Corollary 6.5 in order to reduce the dimension, and
only then use (7.2). The original dimension can then be recovered with the help
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of purely geometric arguments. Here are the details. Take a 1-separated set
{z1,...,22en } in K. Such a large separated set exists. For example, a maximal
1-separated set is always a 1-covering, and since assuming that N(K, B(l})) =
247 it follows that a 1-covering collection has at least 21" elements. Chose a
dimension k < n with 2¢™ > C*. By Corollary 6.5, for any given set of 2¢™
points, we can find a subspace E of dimension k such that after projecting the
set of points into E, the mutual distances do not shrink by more than \/gs’ (c1).
This means that the new set, {Pgz; : 1 <7 < 29"} C PpK, is g¢-separated, for
€g = §€—2c1+1. Since every z; + S B(l3) is of diameter ¢q and therefore can
include only one point of this new set, we get

N(PgpK, %(B([;) NE)) > 29" = gler )k

Now, since in case (b), 2°'% > C, we can apply (7.2) to the latter formula and
extract the following meaningful estimate:

N((B(Iz)NE)®, %"(PEKV) > 9(cif ~log, Ok

Using the facts that (PgK)° = K°NFE and that (B(I)NE)° = B(IZ)NE, and the
property that for every T symmetric and convex N{B(I3)NE,TNE) < N(D, %T),
we get

N(B(15), FK°) 2 2R loe OF,

Applying k = ﬁg-;% to the latter formula verifies (7.4). This completes the
proof.

We offer now some extensions and comparisons.

Remark 7.3: The reasoning in the preceding proof can be applied without an
assumption on the cardinality of N(K, B({%)). The estimate that would emerge
is

(7.5) N(B(z?;>,c\/ K°) > (N(K, B{))
In the language of entropy numbers inequality (7.5) has a more appealing
form (recall the definition of entropy numbers for u: X — Y. namely ¢, (u)

=inf{e: N(B(Y),eB(X)) < 2¥}), as follows. For w: [s" — X.

(7.6) enlu’) > c\/%(u).
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Note that the duality conjecture in this case suggests that the term \/m can
be eliminated. This is still an open problem. It should be mentioned that results
stronger than (7.6) regarding the duality conjecture in this case were established
by V. D. Milman and S. J. Szarek in [8]. These results, however, do not improve
Theorem 7.2.

Remark 7.4: Theorem 7.2 can be compared with a result of G. Pisier, written
originally for operators of rank < n (see [11, Corollary 2.4]). In the language of
covering numbers it reads as follows. Under the condition N (K, B(l})) = 29"
as in Theorem 7.2,

2
N(B(I® ,c’—cl——Ko > 2c1n/2’
B T Togen ™)
where ¢ is an absolute constant. Note that the inequalities (7.3) and (7.4) provide
better estimates.

Remark 7.5: Theorem 7.2 can be complemented as follows.
Assume that N(B(1%), K°) = 29",
(a) If ¢; > 2log, C then

(7.7) N(K,B(l3)) > 297/,

(b) If ¢; < 2log, C then

- 1 ¢ cin
(7.8) N(K, 18M—*(K)V 2—61,,3(13)) > 202,

where C’ is an absolute constant, and M*(K) = [q._, ||u|xodu.

Note that, unlike (7.3) and (7.4), the pair (7.7) and (7.8) does not constitute
a full duality. The reason is the appearance of the term M*(K) in (7.8), which
does not stay bounded when K varies. The proof uses available methods from
the Asymptotic Theory of Normed Spaces, which are unrelated to the present
paper, and hence is omitted.

8. A comparison with a result of Diaconis and Freedman

Diaconis and Freedman, [3], compared the limit behavior of the following two
distributions. One is the distribution of the first k coordinates of a uniformly
distributed random point {z,...,Z,) on the (n—1)-dimensional sphere of radius
v/n. The other is the distribution of k independent standard Gaussian random
variables in R*. Denote the two distributions by Qn, m and P}, respectively.
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Diaconis and Freedman found that when n — oo and k = o(n), the variational
distance between the two distributions tends to zero. A precise estimate for the
convergence is

1P~ Quymall < 223
where the variational distance is defined by ||P — Q|| = 2sup4 |P(A4) — Q(4)],
where A runs on all measurable subsets of the probability space.

In this section we use our previous results to establish similarity of the two
distributions in a different sense, and in the case k = An, when 0 < A < lis a
small but fixed number. We examine a different similarity notion since we are
interested in the limit behavior of the tails of the distributions. Note that both
distributions concentrate strongly, as n — oo, around their expectations, with
tail distributions exponentially small. Therefore, similarity of the tails would not
be captured by establishing that the variational distance is small. We compare
the first order terms in the exponents describing the tails. Here are the details.

The symmetry of the k coordinates in both distributions reduces the question
to a comparison between the following two one-dimensional distributions (as
functions of ¢'):

k
P/t = Prob[z y2 <t':y=(yi,...,Ys) uniform on v/nS""1],
=1
k
P (t') = Prob[z g? <t':g;iid. gaussians, 1 <i < k.
i=1
Denote t = ¢'/k, x = y//n and P;(t) = P/(tk). The displayed distributions get
the form

k
Py(t) = Prob [fo <t:z={(zy,...,1,) uniform on S"_lJ
i=1

= Prob[d?(z, E,—k) < At],

k

1

Py(t) = Prob [E ng <t:g;iid. gaussians, 1 <i < k].
i=1

We assume now that k/n is small and estimate P;(t) using (5.3) and (5.4) in

section 5. We can also estimate P»(t) using classical results such as Cramer’s

theorem (see, e.g., [12]). The results of such estimates yield:
(a) If t =1+ 6 then

Pi(t) =1 — e~ 3Un(mz)4d4otk) - p(g) = | — ¢~ 5 Un(mgg)Ho)tolk)
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(b) Ift =1- 6 then

Py(t) = e 70n()=0)+o(k) P, (1) = ¢~ 5 (nlrEg)=d)+o(k)

We see that for each fixed § > 0, as k — oo the two respective tails differ by
at most o(k) multiplying an exponentially (in k) small number.
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