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ABSTRACT 

In this  paper  we es tabl ish  concent ra t ion  p h e n o m e n a  for subspaces  wi th  

a rb i t ra ry  dimension.  Namely,  we display condit ions under  which the  Haar  

measu re  on the  sphere  concent ra tes  on a ne ighborhood of the  intersect ion 

of the  sphere  wi th  a subspace  of  R n of a given dimension.  We display 

appl icat ions  to a problem of project ions  of points  on the  sphere,  and  to 

the  dual i ty  of  en t ropy n u m b e r s  conjecture.  

1. I n t r o d u c t i o n  

The classical concentration phenomenon refers to concentration of the Haar mea- 

sure on the sphere S n -1  around the intersection with (n - 1)-dimensional sub- 

spaces. Namely, for any fixed x, the area in S n - l o f  the x-neighborhood of an 

(n - 1)-dimensional subspace converges to 1 when n -+ c~. This phenomenon and 

its extensions have at t racted much attention, and have a variety of applications 

in the Asymptotic  Theory of Normed Spaces; see, e.g., [7], [4]. The complemen- 

tary  case is that  of the area in S n-1 of the x-neighborhood of a 1-dimensional 

subspace. I t  converges, of course, to 0 when n -+ co. In both the case of dimen- 

sion 1 and the case of co-dimension 1, the convergence is exponentially fast, a 

fact which plays a central role in the applications. 
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The results displayed here relate to the limit as n --+ oc of the area in S n -  1 

of the e-neighborhood of a k-dimensional subspace Ek, for the full range of k 

between 3 and n - 3. A particular case is when k is proportional to n, namely 

k = An. In this case it is not difficult to show (we do this in section 2) that  for 

every 0 < A < 1, there exists a critical value e(A), determined by the formula 

sine(A) = x / 1 -  A, such that: If : > :(A) then p((Ek)~)-~l  as n -+ c~, and 

if s < a(A) then #((Ek):)-+O as n -+ c~ (as customary, (Ek): denotes the set 

{x G S n-1 : p(x, Ek N S n- l )  < ~} where p is the geodesic distance on the sphere, 

and p denotes the normalized rotation invariant Haar measure on the sphere). 

Our main concern is finding the exact rates of convergence. Approximations for 

these rates turn out to be useful in several applications. We show that  in both 

the case ~ > ~(A) and the case ~ < c(A), the rate of convergence is exponential 

in n, namely 1 - e -~n and e -'~n respectively, where 7 = 7(A, 5) is a constant 

depending only on A and on 5 = s - s(A). We provide precise estimates for the 

constant 7(A, 5). 

The established estimates are then applied to several problems in the Asymp- 

totic Theory of Normed Spaces. The first application deals with projections of 

points on the sphere into lower dimensional subspaces as follows. A random point 

on S n-  1 projected on a An-dimensional subspace, has, with high probability, eu- 

clidean norm close to v~ .  We estimate precisely this probability. This enables 

us, for instance, to provide an isomorphic Johnson-Lindenstrauss lemma. The 

second application is concerned with the duality of entropy numbers conjecture. 

In the special case where one of the bodies is the euclidean ball B(/~), and where 

the covering number of K (a general convex body) by B(l~) is exponentially 

large, we show duality, namely that  the covering number of B(l~) by the polar 

body K ~ is also exponentially large. We also use the estimates to compare, fol- 

lowing Diaconis and Freedman, the distribution of the first k coordinates of a 

random vector on the (n - 1)-dimensional sphere with a random gaussian vector 

with k coordinates. 

The paper  is organized as follows. In section 2 we display a useful represen- 

tation and derive the critical value of the concentration. Section 3 contains the 

main estimate when A and ~ are fixed and n -+ co. This estimate is generalized 

in section 4 to the case in which A and v are not necessarily fixed and may change 

with n. Section 5 includes several special cases, among them a case which is use- 

ful in the applications. In section 6 we give the application regarding projections 

of points on the sphere. The latter result is further applied in section 7 to the 

duality of entropy numbers question. In chapter 8 we give the estimates related 
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to the ment ioned result  by Diaconis and Freedman.  

ACKNOWLEDGEMENT: The  research was carried out under  the supervision of 
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2. A u s e f u l  r e p r e s e n t a t i o n  o f  t h e  s p h e r i c a l  a r e a  

In this section we represent  the area  of the e-neighborhood of a k-dimensional  

subspace by means  of Beta-d is t r ibuted  r andom variables. Th rough  this repre- 

sentat ion,  some of the proper t ies  of the behavior  of the area become t ransparent .  

The  area, on the sphere, of the e-neighborhood of a k-dimensional  subspace is 

1 sin n - k - 1  x cos k-1 xdx. 
#((Ek)~) = fo/2 s inn_k_l  x cos k-1 xdx 

By the change of variables u = sin 2 x one gets 

/o 1 sin2 U n ~  l(l__u)y_k ldu. 
(2.1) /~((Ek)~) = f01 ~_~_, U 2 (1 k 1 - u ) ~ -  d u  

Recall t ha t  the integral f l  Urn_t( 1 _ u)l_ld u coincides with the Be ta  function 

B e t a ( m , / )  - r(m)r(1) _ (m- 1 ) ! ( / -  1)! 
F ( m  + l )  (m + l - 1)! 

This  can be easily verified by induction. The  expression (2.1) implies, therefore, 

tha t  as a function of e, the measure  p((E k)e) is the dis t r ibut ion of a Be ta  r andom 
n - k  k variable wi th  pa rame te r s  (--~-,  ~). The  expecta t ion  of such a variable is ~-kn 

Let t ing  k = An, we can write 

P(n/2)  f0 sin2e (1-~,). 
(2.2) ,((Ek)~) = r(An/2)r---~: a)n/2) u 2 1(1 _ u)~- ldu.  

For a r a n d o m  variable Yn with dis tr ibut ion Beta((1 - A)~, A}),  we have 

#((Ek)~) = Prob[Yn _< sin 2 e], 
(2.3) 

E[rn] = (1 - A), 

and 

V a t [ m ]  ,~(1 - ,~) 
- -  ~n-~c~ O. 

n/2 + 1 
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Remark  2.1: From the derived representation it is possible to get, easily, the 

existence of, and the formula for, the critical value e(A). The expectation of the 

distance of a random point x from the subspace Ek is determined by the expec- 

tation of Yn which is independent of n, and it is therefore :(A) = arcsin(x/1 - )~). 

Approximately half of the measure on the sphere is within a distance smaller than 

s(A) from the subspace. The argument is that the median and the expectation 

are close. This already verifies the existence of the critical value of s. Moreover, 

the Beta random variables Yn concentrate, when n --+ oo, around their mutual 

expectation. This holds, for example, since the variance of Y~ tends to 0 as 

n ~ oc. By (2.3) we see that, therefore, the measure on the sphere concentrates 

within distance s()~) of the subspace. 

Remark 2.2: Note that the e-neighborhoods we took were with respect to the 

geodesic distance on the sphere. If, instead, we would compute the measure with 

respect to the euclidean distance in R '~, the term "sine" in formula (2.2) would 

become simply "s". 

Finding the critical value was straightforward. A deeper investigation of the 

asymptotic deviation of a Beta variable from its mean (using methods to handle 

Beta random variables with large parameters with a constant ratio) is needed in 

order to get the convergences rates. This is described in the next section. 

3. T h e  m a i n  e s t i m a t e  

In this section we display and prove the main result of the paper. Throughout 

what follows we use the following notation. For variables A and B depending on 

n, we write A -~ B in the following two meanings. 

(1) If both A and B are close to 0, A ~_ B means that A _+ 1 as n --+ oc. 

(2) If both A and B are close to 1, A ~ B means that 1-A _ 1_--,~ --+ 1 as n --+ oo. 

When A and B depend on several parameters, we specify which parameters are 

fixed, and we mean that the convergence is uniform with respect to all other 

parameters. 

THEOREM 3.1: Let Ek be a k-dimensional subspace of  R n, and denote by 

#((Ek)e) the Haar measure on the sphere S n -1  of the set of  points within a 

geodesic distance smaller than e of Ek. We write k -- An. Fix  0 < e < 7c/2 and 

0 < A < 1. The following estimates hold as n ~ co. 

(i) I f  sin 2 e > 1 - A, then 

1 V / ~  - %) e~U(~,~)" 
(3.1) #((Ek):) ~-- 1 - v / ~  sin2 e _ (1 - A) 
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(ii) / fs in2e < 1 - A, then 

1 V/A(1 - A) e}~,(x,~ ) 
(3.2) #((Ek)~) -~ ~ (1 - A) - sin 2 c 

where u(A, s) = (1 - A) In ~ + A in ~ 

For the proof of Theorem 3.1 we need the following preliminary observations. 

We employ ideas given in Alfers and Dinjes [1] for comparing a 

Beta(am, (1 - a)m) distributed random variable with a standard Gaussian ran- 

dom variable, where m is large and 0 < a < 1 is constant. Following [1], define 
the two functions: 

l - a  in p ) l / 2  A(a,p) =sign(a-p)x/~((X-a)ln(-~----_p) + a  

(thus u(A, c) = A2((1 - A), sin 2 c)/2), and 

D(a,a) - ~ -  a) A(a,p) where a = A(a,p). 
a - - p  

The mapping A(a,p) is well defined (the term in the parentheses is always 

positive), and for every fixed a it maps (0, 1) bijectively onto (-(x~, oo). No- 

tice, however, that if A(a,p) = 0 then a = p, and then D(a,  0) is not defined. 

We define it in the natural way as the limit of D(a, a) when a ~ 0 and get that  

D(a, 0) = 1 for every a. A straightforward calculation (using the change of vari- 

ables a = A(a, t), the observation that o~A(a,p) = - ~-P the Stirling p(1-p )A(c~ ,p )  ' 

formula and the behavior of D(a, a)) yields the following results. 

LEMMA 3.2 (See [1, Theorem 1.1]): I f Y  is beta-distributed for the parameters 
(am, (1 - a)m) then 

(3.3) Prob[Y > p] = e sm(~) fA( ,v) ~ ~ a ~ 

~/x:_ 2 D(a, a)da - ~ - ~  v ~ , ,  e 

where Sm ( a ) is very small for large m, namely Sm ( a ) ~_ (y~m)( 1 ~1 I--~1 )m-*~ 

--+0. 

COROLLARY 3.3 (See [1, Corollary 1]): Let Z be a standard Gaussian random 

variable, and let Ym be Beta-distributed with parameters (am, (1 - a)m). For 
m --+ c~ and for fixed p 

(i) If  p > a then 

Prob[Ym _> p] = D(a,  A(a, p)). 
(3.4) li~moo Prob[Z _< x/-r~A(a,p)] 
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(ii) I f  p < ~ then 

lim Prob[Ym < p] = D(a, A(a,p)).  
(3.5) m-~oo Prob[Z _> vZ~A(a,p)] 

(Note tha t  the case p < a is not covered in [1, Corollary 1].) 

Following [1], another result can be obtained as follows (we use it in section 

4). 

PROPOSITION 3.4 (See [1, Theorems 2.1' and 2.1"]): Assume Y is a Beta- 

distributed random variable for the parameters (am,  (1 - a)m), and denote 
at m at! am-1 Then = a~_$_ 1 and - m-1 " 

Prob[Y _< p] > Prob[Z _> x/m - 1A(a' ,p)],  
(3.6) 

Prob[Y _< p] _< Prob[Z _> ~/m - 1A(a",p)].  

Proof of Theorem 3.1: We use Corollary 3.3 with m = n/2, a = (1 - A), and 
p = sin 2 c. Again, let Z be a s tandard Gaussian random variable. First examine 

the case p > 1 - A. Denote by �9 the Gaussian distribution function O(x) = 

v~fz__oo e-~lt2dt. Then Prob[Z _< V/-~-A((1 - A),p)] = ~ (x /~A( (1  - A),p)). 
Notice tha t  in this case A((1 - A), p) is negative. Differentiation easily yields the 

following approximation for the Gaussian integral for y positive: 

(3.7) 1 1 2_ 1 f o o  lx2 1 1 _ K  
- - e -  2 < e - ~  d x  < - - - e  2 . 

 y-l + y - Jy  - 

This approximation implies tha t  

Prob[Z < ~/-~A((1 - A),p)] _~ - -  
1 e -~(A2((1-;~'p)/2)) 

V / ~ ( - A ( ( 1  - A),p)) 

(here, and throughout  this section, both  A and r (= arcsin v/fi) are fixed). 

direct substi tution yields 

A 

v / ~  -~)  .... D((1 - A), A((1 - A),p)) - f f L - ~ ; - p ~ i t t l  - A),p). 

Therefore, using Corollary 3.3, we get the estimate 

Prob[Y >_p]~-cb ( ~ f ~ A ( ( 1 -  A),p)) D ( ( I -  A ) , A ( ( 1 -  A),p)) 

1 X / ~ -  A) _~(A2(O_~),p)/2) 
: e 
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In o ther  words, if sin 2 ~ > (1 - A) then  

Prob[Y _< sin 2 c] = 1 - P rob[Y _> sin 2 ~] 

1 ~ -- ~) e__~(A2((l_A),sin2 s)/2). 
sin 2 ~ - (1 - A) 

This  comple tes  the  proof  in the  case sin 2 s > (1 - A). The  case sin 2 c < (1 - A) 

follows, in fact, f rom the former case. Assume sin2x < (1 - A), and  let  Y~ be a 

Be t a -d i s t r i bu t ed  r a n d o m  var iable  wi th  p a r a m e t e r s  (An/2,  (1 - A)n/2) .  Then  Y '  

has the  same d i s t r ibu t ion  as 1 - Y and therefore  (since now cos2r > A) we get 

P rob[Y _< sin 2 ~] = P rob[Y '  > cos 2 c] 

1 ~ - A) . (A2,;~ cos 2 

7 )  ' ' 

Since A(t ,  s) = A(1 - t, 1 - s), the  p roof  is complete .  

4. T h e  c a s e  o f  A a n d  c n o t  n e c e s s a r i l y  f i x e d  

The  es t ima tes  in the  previous  sect ion app ly  to the  case n --+ c~ wi th  A and ~ fixed. 

In  many  problems,  however, we would like to allow A to change wi th  n. To cover 

such ins tances  we use P ropos i t ion  3.4. This  p ropos i t ion  gives es t ima tes  from 

above and  from below, r a the r  than  l imi t  es t imates ,  for the  required probabi l i t ies .  

The  expressions we get  resemble  the  es t ima tes  a t t a ined  for A and ~ fixed. 

We first give Theorem 4.1, which is in the  most  general  form. In Theorem 4.2 

we place an ex t r a  condi t ion  which simplifies the  es t imates .  This  condi t ion  can be 

relaxed,  to  form a condi t ion  which holds in all  cases relevant  to us in this  paper .  

The  resul t  is given in Theorem 4.3. 

T H E O R E M  4 . 1 :  Let  n > O, 3 < k < n - 3, A = k - n '  and let Ek be a k-dimensional 

subspace o f  R n. For c > O, let #((Ek)~) be the H a a r  measure on the sphere S n-1 

o f  all the points  within a geodesic distance smaller than ~ o f  Ek.  Denote 1 sin2 ~ 
- -  1 - ) ~  

and l ~ - c~ e . Then there  exist positive constants C~,n and C~,n, bounded by an 

absolute constant M ,  such that: 

(i) I f s in2~  < 1 - A then 

1 e-U-C'~,. - - l n  1' 

V / ~  1 -~ ~/U -4- C' ~,n + In l ~ (4.1) ~/u+c~, n Tlnl '  

< 

1 e-U-c~. , - ln l  
< 
- v ~ V / U + C ~ , n + l n l  
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(ii) I f  sin2 e > 1 - A then 

(4.2) 
1 e-U-c'x,. - - In  l' 

1 
1 . /U c' 

x/u+c~,. +lnl' -~- V + :~,n + In / '  

<_ p((Ek)~) 

1 (3 -u-cx ,n- ln l  
< 1  
- ~ v /u  + c~,n + ln/  

n 1--A A where u = ~[(1 - A)In ~ + A In ~ ] .  

I f  we restrict our discussion to the case where the terms l and l '  in Theorem 

4.1 are bounded from below and from above, we can give a simpler formulation 

of the result. 

THEOREM 4.2: Let  n >_ O, 3 < k < n - 3 ,  A = k /n ,  and let Ek beak-d imens iona l  
s in  2 e subspace of  R n. Fix  11 > 0 and 12 < o~, and assume that  ll < ~_~ < 12, 

cos  2 11 < ~ < 12. Then there exist absolute constants c,c', Cl , . . . , c4 ,  depending 

only on 11 and 12, such that: 

(i) I f  sin2 e < 1 - A, then 

e -u  e-U 
(4.3) c , ~  <_ #((Ek)~) <_ c2v/-~+e,  

(ii) I f  sin 2 e > 1 - A, then 

e - u  e - u  
(4.4) 1 - c 3 ~  _< #((Ea)~) < 1 - C4 , v / ~  - [ - 

C 

where u = ~[(1 - A)In s in  z e + A In cos~-~]. 

The restrictions of boundedness imposed on I and l '  in the s ta tement  of Theo- 

rem 4.2 can be relaxed. In the next theorem we assume, instead, only tha t  l and 

l '  are between 1 /n  and n. 

THEOREM 4.3: Let  n > O, 3 < k < n -  3, A = k /n ,  and let Ek be a k-dimensional 

subspace o f  R n. Assume that  

1 sin 2 e 1 cos 2 e 
- < n  ~ < n ,  - < n  " - ~  < n .  

Then there exist absolute constants c, c', Cl , . . .  , e4, and a sequence an -~ 1, such 

that: 

(i) / / ' s in  2 e < 1 - A, then 

e-an u e-C~n U 
( 4 . 3 )  c 1 ~ ~ ].t((Ek)e) ~ 5 2 ~ Jr ~ 



Vol. 132, 2 0 0 2  PROPORTIONAL CONCENTRATION 345 

(ii) /fsin2e > 1 - A, then 

(4.4) 
c--OLnU e ~ n U  

1 -c3v/-~.- ~ ~ p((Ek)s) <_ 1 --C4v~+c 

n 1-~ In cos~-~ ]. whereu= y[ (1 -  A ) l n ~  + A 

Proof of Theorems: Proposition 3.4 together with the approximation (3.7) give, 
for sin2e < 1 - A, that 

1 e - (  1 e-~ 
1 < ~( (Ek)  E) < - 

and for sin2e > 1 - A, that 

1 e - (  1 e-~ 
1 x / ~  x/~ -< #((Ek))~ --< 1 -- ~ ~ + V~' 

where 

n 
~ = ~ ( ( 1 -  A)(t  (1 2A)n)  In ((1 - A)(1 (1-~2~)~) (1 + 0~-2) ) s i n  2 e ) 

+ A In k- c~s~-~c } ], 

~, n ( l - A ) ( l + ~ _ 2 ) ) + A ( l _ ~ n ) l n ( A ( l - i - ~ n ) ( l + - - 2 )  
- - ~ ( ( 1 - A ) l n (  sin2 e cos2e n-2 ) ) .  

Rearrangement of terms yields 

(1--)~/n 
(~L__~_2) ( 2 )n ) 2 sin2e ~ = u + l n  1+  2 -~-Z+ln 1 (1---A + I n ( I - A - - 2 ) '  

n 

( { ' = u + l n  1+ 2 - ~ + l n  1 -  2 ~ + I n  2 
n 

when u is spelled out in the statement of the Theorems. Restriction to the case 
(1 - A ) n  _> 3 and An >_ 3 implies the existence of positive constants c~,n and c~,,, 
bounded by a constant M such that 

= u + c ~ , , , + l n l ,  ( '  = it + c~, n + In l'. 

This proves Theorem 4.1. In the case of Theorem 4.2, for large enough n, 
and ~' are bigger than 1 (actually they are tending to infinity) and hence the 
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addi t ional  1 / v f ~  or 1/~/~ in the denomina tor  of the displayed inequalities can 

be ignored, result ing perhaps  in a slightly larger constant .  Since l and l '  are 

assumed bounded  from below and from above, we can subst i tu te  In I and In l' by 

constants  as well, and the proof  of Theorem 4.2 is also complete.  

To prove Theorem 4.3, we use Theorem 4.1 and the boundedness  assumpt ion  

in a similar way. 

5 .  S o m e  s p e c i a l  c a s e s  

In this section we provide useful expressions for the general es t imates  in several 

par t icular  cases which m a y  become handy in applications.  The  computa t ions  

and subst i tu t ions  are s t raightforward,  and are included for completeness.  

CASE 5.1: sin s ~ = (1- I ) -4-A6,  where A --+ 0, A >_ c" /n  for an absolute constant  

c '!, and 0 < 5 < 1 is fixed. 

(a) If  sin 2 ~ -- (1 - A) + .~5, then  

(5.1) 
1 - ~ ( ~ 0 n ( ~ ) - 5 ) + o ( ~  2)). # ( ( E a ) ~ )  - 1 - c e 

,/~(,k(ln(~_---~i~) - 6) + O( A2) ) 
u  _ v 

(b) If  sin 2 c = (1 - ,k) - A6, then 

(5.2) C ! e -  ~ ( A ( I n ( ~ ) + 5 ) + O ( A  2)) 

+ 6) + 

where, in general, c and c' depend on 6. The constants  c and c' become absolute  

if we fur ther  assume 5 to be bounded away from 1 (say if we assume 5 < 9/10).  

In  order to verify (5.1) and (5.2) we establish the boundedness  condit ion re- 
sin 2 ~ cos 2 s quired f rom the expressions ~ and - -7--  in the s t a tement  of Theorem 4.2. 

Such a bound  exists for a fixed 6, and it is uniform with respect  to 5 bounded  

away from 1. Now, Theorem 4.2 implies the following. When  sin 2 e = ( 1 - A ) + A 6 ,  

1 - 

C e- ~ (A2 ((1-*x)'sin ~ ~)/2). 

~/- ~(A~((1 - At, sin ~ c)/2) 
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We can make use of the equality 

~A2((1 - A), (1 - A) + A(i) = (1 - A)ln (1 1 - A + 5) 

= - ( 1 -  A) in (1 + 1A_--~SA) - Aln(1 - 5) 

= -A6 + ~A252/(1 - A) + . . . .  Aln(1 - 6) 

and get the estimate, thus verify, (5.1). 

When sin 2 e = (1 - A) - A5 (namely cos 2 e = A(1 + ~)), we look at  

p((Ek)~) = Prob[Y' > cos 2 ~] ~_ c' e-~(A2(a,cos 2 ~)/2) 
~/~ (A2 (A, cos 2 e)/2) 

Now we make use of the equality 

~A2(A,A(1-t-6)) : A l n ( 1 - ~  ) + ( 1 -  A ) l n ( 1  1 ; _ A A ~  ) 

= Aln ( 1 - - ~ ) -  (1 - A) ln (1 - 1 - ~ 6  ) 

: + , o  

and deduce est imate (5.2). 

Remark: If in the previous example we assume that  5 is small, the terms in (5.1) 

and (5.2) are of order e - ~ .  In the classical concentration result a term e -'~= 

appears. We note that  al though there is a square in both  expressions, ~2 and 

62 , they originate differently. In classical concentration the square appears when 

one computes the modulus of convexity of the euclidean ball. In our setting the 

square is a result, of the behavior of the term u in Theorem 4.1 for small 6. This 

is the reason tha t  in Case 5.4 below, when we use the formula in Theorem 4.1 for 

large a, we get completely difli~rent results. Indeed.. the expression (In( 1___2_~) _ 5) , 1  

which for small 5 behaves like 52 explodes when 5 --> 1. 

CASE 5.2: sin 2 e = (1 -- A) • (1 -- A)& where A -+ 1 and 0 < 5 < 1 is fixed. 
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(a) If  sin 2 ~ = (1 - )~) + (1 - A)5, then 

(5 .3 )  

p ( ( E k ) ~ )  ~-- 1-- 
C 

~ ( ( 1  - A ) ( l n ( ~ )  + 5) + O((1 - A)2)) 

(b) If  sin 2 c = (1 - ~) - (1 - ~)5, then 

(5.4) 

tt((Ek)~) ---- 
C t 

~/~( (1  - )~) (ln(y~_l ~) - 5) + O((1 - A)2)) 

e -  ~ ( ( 1 - A ) ( l n ( ~ ) + 6 ) + O ( ( 1 - A )  2 )). 

e -  ~ ( ( 1 - ~ ) ( ' " ( ~ ) - ~ ) + ~  2)) 

where, again, in general c and c ~ depend on (f, but  become absolute if 5 is assumed 

to be bounded away from 1. 

Verifying (5.3) and (5.4) follows the same lines as in example 5.1. 

CASE 5.3: sin 2 e = (1 --/~) 4- 5, where 0 < A < 1 is fixed and 5 --+ 0. 

(a) If  sin 2 ~ = (1 - A) + 5, then 

.~ e - ~ ( ~ + o ( 5  )). (5.5) ~((Ek)~) -- I - c ~ ~2 3 
~/n ( 6 2 

(b) If  sin 2 ~ = (1 - ~) - 5, then 

C I n 5 2 3 

(5 .6 )  )) 
/ n  ( 6 2 

where, in general, the constants  c and d depend on A. If  A is assumed to be 

bounded away both  from 0 and from 1, the constants  become absolute. 

In order to verify (5.5) and (5.6) we establish again the boundedness conditions 

for the expressions sin2 ~ and ~~ ~ in the s ta tement  of Theorem 4.2. Such a bound ---W- 
exists for a fixed A, and it is uniform with respect to A bounded  away from 0 and 

from 1. Now, Theorem 4.2 implies the following. 

When  sin 2 ~ = (1 - A) + 5, 

I_t((Ek)e) "" 1 _ - -  c e-~(A2((1- )~) , s in  2 ~)/2). 

~/~(A2((1 - A), sin 2 s) /2)  

We can make use of the equality 

1A~((1 - )~), (1 - ~) + 5) = (1 - A) ln (1  1 ~  A 

1 6 2 
- -  + 

2 - A) 
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and get the desired estimate (5.5). The second case, (5.6), is verified in the same 

w a y .  

CASE 5.4: sin2s ---- (1 -- A) -- (1 -- A)5, where A is close to 1. (Note that the 

assumption here is the same as in Case 5.2, except that here no conditions are 

imposed on 5. We make use of this specific condition in the proof of Proposition 

6.2 below.) In this case we get an inequality as follows: 

e - ( 1 - A ) ( l n ( ~ ) - ~ ) n / 2 + l n ( ~ )  

(5.7) < c 
~/(1 - A)(tn(]~_l ~ ) - 5 ) n / 2  + ln(1_-~1 ~) + c' 

In order to verify (5.7) we use Theorem 4.1. (We cannot use, as we did in the 

previous cases, Theorem 4.2, since the boundedness conditions in Theorem 4.2 

do not hold uniformly for 5 close to 1.) The terms u, l and l' in Theorem 4.1 are 

in this case 

u = 2 ( ( 1 -  A)( ln  ( 1 - - ~ )  - 5 )  + ~ ( 1 -  A)252/A 2 -  ~ ( 1 -  A)353/A 3 Jr-. ' .  ) ,  

sin 2 e 
l - -  - -  

1 - A  
cos 2 

/ !  - -  _ _  

A 

Therefore 

- 1 - 5 ,  

1 A 

u + l n / _ >  2(1 - A)( ln  ( 1 ~ 1  ~) - 5) + ln(1 - 5). 

Inserting this inequality in Theorem 4.1 implies (5.7). 

Similar inequalities can be deduced for the case sin 2 s = (1 - A) + (1 - A)5, and 

likewise for the other inequality in Theorem 4.1. We omit the details. 

6. An  appl icat ion to a project ion problem 

Consider the orthogonal projection of a random (uniformly distributed) point x 

in the ( n -  1)-dimensional sphere onto a k-dimensional subspace. The expectation 

of [Px[, the euclidean norm of the projection Px, is close to V/-k/n. The reason is 

that  the expectation of the square of the euclidean norm is exactly k/n. Moreover, 

the set of points x for which [Px[ is close to v/-k/n has a large measure. This 

gives rise to the following general question, several aspects of which we address 

in this section. 

QUESTION 6.1: Given a set of cardinality N on S n-l ,  does there exist a subspace 

of dimension k such that the euclidean norms of the elements in the projection 

of the set on the subspace are not far from v ~ / n ?  
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An answer to this question can be one of two types. First, for a given N 

(which depends on the dimension n), one may provide an estimate A(N)  such 

that  whenever a set of cardinality N on the sphere is given, a k-dimensional 

subspace exists such that  all the projections on the subspace of the points in the 

set have euclidean norms which are A(N)  close to V/-k/n. Second, for a given 

degree of closeness A, one may estimate the maximal cardinality N(A)  such that  

whenever a set of cardinality N(A)  is given, a k-dimensional subspace exists such 

that  all the projections on the subspace of the points in the set have euclidean 

norms which are A-close to v/k/n. In both cases we are interested in the behavior 

of the estimates for large dimension n. We refer to an answer of the first type 

as an isomorphic answer and to the second type, for a fixed A independent of 

dimension, as a A-isometric answer. In the first part  of this section we give a 

general, however not transparent,  answer to Question 6.1, addressing both types 

of estimates. In the second part  of the section we provide a more concrete form 

of the answer in a particular case (which we then use in the next section). 

Our way to establish the existence of a subspace with a certain property is 

to show that  the measure of subspaces in Gn,k with this property is positive. 

(Gn,k is, as customary, the Grassman manifold of k-dimensional subspaces of 

R n, endowed with the normalized Haar measure.) 

To provide our answer to Question 6.1, we need the following observations. 

First, the measure of subspaces in Gn,k with a certain property is the same as 

the measure of orthogonal transformations U E O(n) such that  U(Eo) has this 

property, where Eo is some fixed subspace of dimension k. (Here O(n) is the 

group of orthogonal transformations on R n endowed with the normalized Haar 

measure.) Second, consider a set of points N R n. {Xi}i= 1 in Placing a restriction 

on the norms of their projections on U(Eo) is equivalent to placing the same 
- 1  N restriction on the norms of the projections to Eo of the set {U xi}i=l. This is 

implied by the equalities PUEo x = PuEoUU-lx = UPEoU-lx. Third, consider 

{xi}i=l in If 1 -  ~-:~i=1 #{U �9 O ( n ) :  PEoV-lxi ~_ again a set of points N R n. N 

I} > 0, for a given set I C [0, 1], then the measure of the family of orthogonal 

transformations satisfying IPEoU-lxil �9 I for every 1 < i < N,  is positive. 

For k = (1 - A)n and for A > 0 define 

(6.1) #0 = p{x �9 S~-1: ]]PEkXl- X / r ~ ]  < A}. 

Taking into account these three observations, we see that  if N < 1/#o, then for 

{xi}i=l in there exists a subspace Ek of dimension k such that  for every set N s n -  1 

every xi, i = 1 , . . . ,  n, IPEkXi -- ~ / ~ 1  < A. The above enables us to establish 

relations N(A)  and A(N)  as an answer to Question 6.1. Indeed, given A, we 
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can use sections 3, 4 and 5 to estimate #0 = #0(A), using the following evident 

equality: 

Ito = It{x: 41  - A - A < [PE~xl < 41  - ~ + A)} 

= It{x: d(x, E;~n) 2 < (v/i - - / ~  4- A) 2 } - It{x: d(x,E)m) 2 < (X/1 - )~ - A)2}, 

and then have the estimate N(A) = 1/It0(A). To get an estimate for A(N),  we 

do the reverse. In Proposition 6.4 we use the above scheme for a special choice 

of N. 

Remark 6.2: The preceding derivations, and in particular the estimate for N(A),  

are close in spirit to the Johnson-Lindenstrauss Lemma; see [5]. The Lemma 

gives an estimate for the smallest dimension k(n) such that any subset of cardi- 

nality n of l~ can be (1 4-e)-isometrically embedded into l~ (n). Such an embedding 

can be realized by projecting into a well chosen subspace of the appropriate di- 

mension, and by dividing then the images by x/~. The reason the method works 

is the following. Instead of the set of points, say N', in l~, one considers the set 

.Af '={ x i - x j  } 
xjl 

of normalized differences. To this end a restriction has to be imposed on the 

cardinality of H ,  or equivalently on the dimension k (the exact restriction can 

easily be computed). Then the existence of a subspace Ek such that for every 

y E Af ~ the euclidean norm of its projection onto Ek is close to v ~  is guaran- 

teed. This insures that the distance between Pxi and Pxj is close to v ~  times 

the distance between xi and xj. In other words, the relative distances do not 

change much. Thus, the resemblance to the derivations in the present paper is 

apparent. However, while in the Johnson Lindenstrauss Lemma the embedding 

was required to be an e-isometry, the present paper offers a general isomorphic 

version. 

Remark 6.3: The following estimate was used in an article by Milman and Pajor 

[9], 

/0,/ ProV  I'-  xl ,lxll-< ( . / 1  (1-~)n/2. 

In the terminology of the present paper the left hand side of (6.2) has the following 

form, 

Prob[x e S n - l :  dist~.ll2(x, Ek ) < 1 -~2 ] .  

Estimates for this expression better than (6.2) can be obtained from the results 

in sections 3-5. Such estimates would be asymptotically accurate. Moreover, 
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(6.2) has meaning only when ~2 > A(1 + !~A(1 - ~)), while using the technique 

of the present paper yields an answer whenever ~2 > A. 

We turn now to the special case for which we get a more concrete answer to 

Question 6.1. Suppose that  e ck points in S ~-1 are projected into a k-dimensional 

subspace Ek. If c is large, it could be that  for no subspace Ek all the norms of the 

projections are close to v /k /n .  We can, however, choose Ek such that  all of the 

projections do not enter some small neighborhood of 0, namely we can establish 

some kind of isomorphic result. The precise result is as follows. 

PROPOSITION 6.4: For any number c, there exists an e(c) (for instance, e(c) = 

e -(2c+1) will work) such that the following holds for every A = k in  fixed. For n 

large enough, whenever a set Af in S n-x is of cardinality [Af[ = e ck, there exists 

a subspaee E of dimension k such that 

(6.3) v~c(c)  < IPEX[ < v~(1  + r 

for every x EAf .  Moreover, by taking a small enough e(c) one can ensure that 

the measure of the set of subspaces in G~,k satisfying (6.3) is arbitrarily close to 1 

(for instance, for e(c) = l E--(2c+I) , the latter measure is larger than 1 -e�89 

Proof: We will show how to establish the left hand side inequality with e(c) = 

e -(c+D. This is the only part  we use in the application. The right hand side 

is at tained in a similar way, and for the two inequalities to hold together we 

reduce c(c) to the magnitude mentioned in the statement of the theorem. To 

prove the left hand side, first note that  the projections of N points do not enter 

an e-neighborhood of 0 if and only if they all stay within a distance more than E 

from E~.  Using the same reasoning as in the general answer above, we find that  

for the latter condition to hold it is enough that  N be smaller than 1/#((En-k)r  

For 1 - A = k / n  small, and when sin2~ = (1 - A)(1 - 5), we use Case 5.4 to get 

that  the inequality 

(6.4) g < \/k(ln(1---k51~) -- 5) - ln(Y1---~-~)e~(ln(~--~)-~)-ln(~--~) 
- -  C ! 

ensures that  N < 1/#((En_k)~). Since the function (ln(l_!~) - 5) can be ar- 

bitrarily large for 5 close to 1, we see that  for any number N of points on the 

sphere, there exists a 0 < 5 < 1, and a subspace Ek of dimension k such that  the 

projections, on Ek, of all the points are out of a X/(1 - A)(1 - 5)-neighborhood 

of 0. For the specific case N = e ck mentioned in the statement of Proposition 
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6.4, we identify 5 = 5(c) for which (6.4) holds. To this end, for k large enough, 

it is enough to ask that 

k 
c k - < ~ ( l n ( 1 - - 1 5 ) - 5 ) - l n ( 1  1_--~), 

or equivalently that 1 - 5 ~ e -2c. This identifies the desired 6. In particular, the 

size of the neighborhood of 0 is 

s(c) = X/(1 - )Q(1 - 5) -,, v / ( i  - -  )Qe -c. 

This verifies the first claim of Proposition 6.4. By choosing a smaller :(c) and 

following the same line of proof, one can verify that the inequality (6.3) is satisfied 

for a large measure of subspaces, and complete the proof. 

We may apply Proposition 6.4 to the set of normalized differences 

} 
I x Yl :x ,  y C N  , 

and get the following. 

COROLLARY 6 .5 :  For any number c, there exists e'(c) (for instance, ~'(c) = 

e -(2c+1)) such that the following holds for every A = k / n  fixed. For n large 

enough, whenever a set Af  in R n is o f  cardinality IAf[ = e c k ,  there exists a 

subspace E of  dimension k such that 

(6.5) v~e ' ( c ) l x  - Yl < IPE x -- PEYl < V~(1 + c'(c)) lx  -- Yl 

for every x, y CAf. 

Remark 6.6: Consider the projection of the sphere S n-1 into R k, with k = 

An. The proportional concentration phenomenon displayed in section 2 implies 

that for every ~ > 0 fixed, the measure of the set of points in S n-1 which are 

projected into the ~-neighborhood of the sphere of radius x/~ in R k tends to 1 

as n --+ c~. Using Theorem 3.1 we get the following result, replacing the fixed 

by a neighborhood of width 1 /v~ .  There exist constants ca > 0 and c2 < 1 such 

that 

(6.7) C l < F t { x : [ P E k x l E  (~/r~_ A v / ~ + I - A  

Notice that (6.7) estimates the measure of the projection of the given strip with 

constants cl > 0 and c2 < 1 independent of n. 



354 S. ARTSTEIN Isr. J. Math. 

7. An  application to the  duality of  entropy numbers  conjecture 

In this section we use Corollary 6.5 to answer a question regarding entropy 

numbers. Recall the covering number, N ( K ,  T), of K by T, where K and T 

are two convex bodies in R n, given by 

N 
N ( K , T )  = min{N:  3{xi}g=l C K , K  C U({x~} + T)}. 

i=1 

The duality conjecture, due to B. Carl and A. Piestch, suggests the existence 

of absolute constants a and /3 such that for every pair of centrally symmetric 

convex bodies T and K the inequality 

(7.1) N ( K ,  T) <_ ( N ( T  ~ aK~  ~ 

holds, where T ~ and K ~ denote the polar bodies of T and K,  respectively. 

In Theorem 7.2 below we verify the duality conjecture in the special case where 

T = B(l~) and log N ( K ,  B(l'~)) = 7n. We need the following result from [6]. 

THEOREM 7.1 (KXnig and Milman): There exists a universal constant C such 

that for any n and any two convex bodies K, T C R n, 

1 (N(K,T) ) 
(7.2) -~ <_ \ N ( T o ,  Ko ) <_ C. 

THEOREM 7.2: Assume that N ( K ,  B(l~)) = 2 c~n. 

(a) I f  Cl > 2 log 2 C, then 

(7.3) N(B(I'~), K ~ > 2 cw'/2. 

(b) I f  C 1 < 2 log 2 C, then 

1 2Cl n/2, (7.4) N(B(I~) ,  ( 4 ~ ) v ~ 2 - C l K ~  _ 

where C is tile absolute constant guaranteed in Theorem 7.1. 

Proof of Theorem 7.2: Case (a) follows immediately from (7.2). Indeed, since we 

assume that N ( K ,  B(l~)) = 2 c1'~, it follows from Theorem 7.1 that N(B(l~) ,  K ~ 

> (2 c l / C )  n. This together with c~ > 2 log 2 C implies (7.3). It is not possible to 

use the same argument in case (b) since in this case ct is too small. Our strategy 

to handle case (b) is to use Corollary 6.5 in order to reduce the dimension, and 

only then use (7.2). The original dimension can then be recovered with the help 
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of purely geometric arguments. Here are the details. Take a 1-separated set 

{x l , . . . ,  x2c1~ } in K.  Such a large separated set exists. For example, a maximal 

1-separated set is always a 1-covering, and since assuming that  N(K, B(l'~)) = 
2 c1~, it follows that  a 1-covering collection has at least 2 cln elements. Chose a 

dimension k < n with 2 cln > C k. By Corollary 6.5, for any given set of 2 c~n 

points, we can find a subspace E of dimension k such that  after projecting the 

set of points into E,  the mutual  distances do not shrink by more than e (1 ) .  

This means that  the new set, {PEw : 1 < i < 2 cln } C PEK, is ~o-separated, for 

eo = ~/~e -2c~+1. Since every zj + 5~B(l~) is of diameter eo and therefore can 

include only one point of this new set, we get 

N(PEK, 2(B( l~)  NE))  > 2 ~1~ = 2 (c~)k. 

C n 
Now, since in case (b), 2 ~ > C, we can apply (7.2) to the latter formula and 

extract the following meaningful estimate: 

Co (PEK)O) > 2(c~ ~_log 2 C)k X((B(l~) n E) ~ 7 

Using the facts that  (PEK)  ~ = K ~  and that  (B(I'~)NE) ~ = B(I~)NE, and the 

property that  for every T symmetric and convex N(B(I'~)AE, TAE) <_ N(D, �89 
we get 

N(B(I~), 4 K~ >_ 2 (~ ~-l~ c)k. 

Applying k = c,n to the latter formula verifies (7.4). This completes the 2 log 2 C 
proof. 

We offer now some extensions and comt)arisons. 

Remark 7.3: The reasoning in the preceding proof can be applied without an 

assumption on the eardinality of N(K, B(l~)). The estimate that  would emerge 

is 

(7.5) N(B(l.~),cilni(K!~B(l'2~))) K ~ >_ (N(K,B(I~))) 2. 

In the language of entropy numbers inequality (7.5) has a nmre appealing 

form (recall the definition of entropy nmnbers for u: X --+ ~.  name]y ek(t~) 

= int'{e : N(B(Y),  eB(X)) <_ 2k}), as tbllows. For . :  l,/~ --+ X.  

(7.6) ~(*,*) >_ ~Fe'ek(~,). 
V rlt 
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Note that the duality conjecture in this case suggests that  the term V/ff/n can 

be eliminated. This is still an open problem. It should be mentioned that  results 

stronger than (7.6) regarding the duality conjecture in this case were established 

by V. D. Milman and S. J. Szarek in [8]. These results, however, do not improve 

Theorem 7.2. 

Remark 7.4: Theorem 7.2 can be compared with a result of G. Pisier, written 

originally for operators of rank _< n (see [11, Corollary 2.4]). In the language of 

covering numbers it reads as follows. Under the condition N(K, B(l~)) = 2 c'n 
as in Theorem 7.2, 

N(B(l'~),c' c~ 
(1 + log(2/cl) ) g~  

> 2cln/2, 

where c' is an absolute constant. Note that the inequalities (7.3) and (7.4) provide 

better estimates. 

Remark 7.5: Theorem 7.2 can be complemented as follows. 
Assume that N(B(I~), K ~ = 2 cln. 
(a) If cl > 2 log 2 C then 

(7.7) N(K, B(I~)) > 2 c1~/2. 

(b) If cl < 2 log 2 C then 

(7.8) N(K, 1 u 18M*(K) (l 2n)) _> 2~n/2, 

where C' is an absolute constant, and M*(K) = fs~,-1 IlUllK ~ 
Note that, unlike (7.3) and (7.4), the pair (7.7) and (7.8) does not constitute 

a full duality. The reason is the appearance of the term M*(K) in (7.8), which 

does not stay bounded when K varies. The proof uses available methods from 

the Asymptotic Theory of Normed Spaces, which are unrelated to the present 

paper, and hence is omitted. 

8. A c o m p a r i s o n  w i t h  a re su l t  o f  D i a c o n i s  a n d  F r e e d m a n  

Diaconis and Freedman, [3], compared the limit behavior of the following two 

distributions. One is the distribution of the first k coordinates of a uniformly 

distributed random point ( x l , . . . ,  xn) on the ( n -  1)-dimensional sphere of radius 

v/-n. The other is the distribution of k independent standard Gaussian random 

variables in R k. Denote the two distributions by Qn,v~,k and pk, respectively. 
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Diaconis and Freedman found that  when n ~ ~ and k = o(n), the variational 

distance between the two distributions tends to zero. A precise estimate for the 

convergence is 
2(k + 3), 

IIP~- Q,~,,/-a, kll < n - -k - -3  
where the variational distance is defined by l i P -  QI] = 2suPA IP(A) -Q(A)] ,  
where A runs on all measurable subsets of the probability space. 

In this section we use our previous results to establish similarity of the two 

distributions in a different sense, and in the case k = An, when 0 < /k < 1 is a 

small but fixed number. We examine a different similarity notion since we are 

interested in the limit behavior of the tails of the distributions. Note that  both  

distributions concentrate strongly, as n ~ co, around their expectations, with 

tail distributions exponentially small. Therefore, similarity of the tails would not 

be captured by establishing that  the variational distance is small. We compare 

the first order terms in the exponents describing the tails. Here are the details. 

The symmetry  of the k coordinates in both  distributions reduces the question 

to a comparison between the following two one-dimensional distributions (as 

functions of tt): 

k 

Pl ' ( t ' )  = Prob[ E y~ _< t ' :  y = (Yl , . . . ,  Yn) uniform on vZnSn-t], 
i----1 

k 

P2'(t ' )  = Prob[ E g~ <_ t ':  gi i.i.d, gaussians, 1 < i < k]. 
i = l  

Denote t = t ' /k,  x = y/v/-n and Pi(t) = Pi'(tk). The displayed distributions get 

the form 

k 

P l ( t ) = P r o b [ E x  ~ < _ t : x = ( x l , . . . , x n )  un i formonS  "-1] 
i = 1  

= Prob[d2(x, En-k)  <_ At], 

P2(t) = Prob ~ 92 < t : gi i.i.d, gaussians, 1 < i < k . 
'- i = 1  

We assume now that  k in  is small and estimate Pl( t )  using (5.3) and (5.4) in 

section 5. We can also estimate P2(t) using classical results such as Cramer 's  

theorem (see, e.g., [12]). The results of such estimates yield: 

(a) I f t = l + S t h e n  

P~(t) = 1 - e-~On(~+ )+~)+o(k), P2(t) = 1 - e-~On(~+ )+~)+~ 
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(b) I f t = l - 6 t h e n  

g l ( t )  = e -~(ln(~- )-5)+~ P2(t) = e  -~(ln(~- )-5)+~ 

We see tha t  for each fixed (~ > 0, as k -+ ec the two respective tails differ by 
at most  o(k) multiplying an exponentially (in k) small number.  
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